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LIMIT ANALYSIS OF CIRCULAR PLATES WITH JUMP
NON-HOMOGENEITY

J. A, Konig and J. RYCHLEWSKI

Institute of Fundamental Technical Probiems, Polish Academy of Sciences, Warsaw, Poland

Abstract—In many practical problems the need arises to consider bodies whose non-homogeneity 1s described
by non-continuous functions.

The subject of the paper is the determination of the carrying capacity of simply supported circular plates,
loaded by uniform pressure and composed of concentric annuli with different mechanical properties. The
above jump of mechanical properties may be caused by jump of plate thickness or by change of material
properties.

Depending on the values of non-homogeneity and the division parameters there exist six different solutions of
the considered problem. In each particular case the moment field, veloaty field and mit load are given The
ranges of validity of all solutions are established Also, the problem of optimum design m the above class of
plates is considered.

In the second part an orthotropic plate is discussed The special case concerming the uniform distribution
of circumferential reinforcement in the case of a reinforced concrete plate is considered. Here again, depending
on different parameters, there may be seven solutions,

The above analyss has allowed some qualitative conclusions to be drawn concerning the design of sotropic
and orthotropic plates with jump non-homogeneity.

1. INTRODUCTION

A coNTINUOUS medium possesses jump non homogeneities if there exist surfaces in which
the values of material constants suffer jump changes. This non-homogeneity is described
by discontinuous functions. Problems with such jumps constitute a comprehensive class
of essential practical importance and also have interesting theoretical aspects.

Recently, the behaviour of an ideally plastic material with a discontinuous distribution
of yield limit has been explored, [1]. Fapers [2, 3] are devoted to the problems of plane
flow. while in [4, 5], the carrying capacity of bars. composed of a number of materials,
in torsion has been analysed.

In the present paper we consider some examples of limit analysis of plates with jump
non-homogeneity. Within the frame oi the theory of limit analysis it is assumed that
mechanical properties of plates at generic point are completely defined by the shape of the
limit surface in the space of bringing moments M, ,, M,,, M,,: F(M,,, C,) = 0. The plate
is called plate with jump non-homogeneity it its middle surface may be divided in n regions
G, with the limit surface being constant inside of each region, but differing on their
bounds F, = 0.

Very often. but in general not always, the form of the functions F, as functions of
M 4 is identical for the whole plate with different constant C, for each region G,. In this
case jump non-homogeneity is described by piece-wise constant functions Cyx,, x,)
where x,, x, denote the coordinates of the middle surface.

The reasons that two adjacent parts of the plate huve different propertics may be
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of various kind. In the simplest case of a plate which is isotropic and homogeneous ali-ng its
thickness, with the limit surface of the form F = M2, — M M,,+ M3,+3M?,— M3 = 0,
we have M, = o,H? where o, is the yield limit and 2H denotes the plate thickness.
The jump of M, may be produced either by the jump of g, or by the jump of H. The plate
with two differenf structures along its thickness gives another example. The jump in
reinforcement percentage in the concrete plate is the typical example of jump non-
homogeneity in the case of orthotropy.

Our paper is based on usual fundamental assumptions of limit analysis of plates, [6].
Thus the local three-dimensional states of stress and strain in the neighbourhood of
contact surface between the parts with various mechanical properties are not taken into
account.

2. FORMULATION OF THE PROBLEM

We shall consider the circular plate composed of two concentric parts of various
mechanical properties. For instance let us take the simple case when our plate is loaded by
a uniform pressure p and simply supported on its circamference, Fig. 1.

TN
[

At the beginning we shall discuss isotropic plates. We assume the validity of a limit
relation obtained from the Tresca yield condition

F = max{|m,—m,|, Im/|, Im,/} — f(p) = 0 2.1

where m, = M,/M, and m, = M ,/M, are dimensionless radial and circumferential
bending moments, respectively, M, is the limit moment in the stronger part. The associ-
ated flow rule takes the form

oF W oF

2, = —W' = , Ry, = —-— = —— 2.
%, W om, Xy o " om, (2.2)

where x,, %, are curvature velocities multiplied by R? (R is the plate radius), p denotes the
radial coordinate related to R, a prime denotes differentiation with respect to p.

The jump non-homogeneity of the plate is described by the function s'(p). For the
plate with the weaker central part we have:

S(p) = nl(0, po)+I(po, 1) (2.3)

while for the other case:

f(p) = 10, po)+1l(po, 1) (2.4)
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where

and I(a, f) is a function called the rectangular impulse, i.e.

0, x<a
I, p)= Hx—a)—Hx—p) =1, a<x<f, a<§p (2.5)
0, f<x

Here H(x) is the Heaviside function. In these cases, when the purpose of the function
I(a, f) is not only to shorten the notation and make it clear, we make use of the following
obvious relations

I, B). I(3,0) = I(y, B, a<y<P<d (2.6)

| ot pat = 16, 10 de+ 16, 1) B fod, O<o<B<1 (7

L1l B = £ B+ S @3(x—a) ~ £ (Bd(x— B (28)

where d(x) denotes the Dirac function.
The quantity p, as before will be called the division parameter, while the quantity 7
defining the limit moments ratio is the non-homogeneity parameter (Fig. 2). The equilibrium

me
P 8
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D' D D 1 mr
E F
El Fl
FiG. 2.
equation takes the form:
2 m,—mg) = —4g PR 9
m,+—(m,—m,) = —igp, q =~ .
p ¢ M,

and boundary conditions are the following:

p=1: wW=m =0 (2.10)
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p=0: m, = m, (2.11)

The purpose of the paper is to investigate the influence of parameters p,, 5 on the
carrying capacity and on the kinematics of the beginning of the unconstrained plastic low
of the plate.

In Section 5 the practically important, but more complicated case of the orthotropic
plate will be considered.

3. ISOTROPIC PLATE WITH A WEAK INTERNAL PART

When 7 is close to 1, the solution should be close to the well-known solution for the
homogeneous plate, irrespectively of po. From this remark Solution 1 follows:

Solution 1
We assume that the stress profile is placed on the side BC for the internal part and on
the side B'C” for the external part of the plate e.g.

m, = f{p) = nl0, py)+1(po, 1) (3.1)

The jump of m,, for p = p, is statically admissible. Substituting (3.1) into (2.9) and making
use of the second relation (2.11) we obtain

2l

2 I r 2
m, = _g,,~+J (10, po)+ (po, D} dp = (n—;{p-) 10. po)

Po

+[1‘gp1—(1-17)]1(p0q1). (3.2)
/)

The quantity of limit load yields from (2.10).
g, = 6[1—pull —n)] (3.3)

From (2.2), (3.1) we have x, = 0 for the whole plate. In this way

W= Wyl —p) (3.4)

thus the above kinematics of the destruction coincides with that for & homogeneous plate.
For p, = 0 and # = | formulae (3.1), (3.2). (3.3) also girves the known solution.

It is convenient to represent the stress profile in a three-dimensional space of m,. m,,. p.
In this space the limit relation (2.1), (2.3) takes the form of the surface shown in Fig. 3.
As before, this surface will be called the surfuce of the mechanical properties.

Now we shall define the bounds of validity of the given solution. It 1s easy to see that
m,(p) decreases monotonically from » (for p = 1) to 0 (for p = 0) if

2/’(‘)(1 - I])”“:pr; %(] - n) 0.
For
3/’5‘)(1 - K} :‘(:,';,L (1—-3) >0

we have
m, =0 for o=, lpgd- M2 —pd eIt = (3.5)
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Thus m, reaches the analytical maximum for p = p., p = 0 and the non-analytical mini-
mum for p = py (Fig. 3).

W

Fi1G. 3.

It means that # is sufficiently small for the given p, and the weaker region is partially
clamped in the external stronger annulus.
The solution holds when
mlpo) 20,  fi =n—~(p5—p3)/(1-p3) >0 (3.6)
It may be demonstrated that the condition m{p.) < 1 is always satisfied.

Solution 2

In the case when the inequality (3.6) is not satisfied, the negative moments m, appear
in both parts of the plate. The stresses in the intervals (0, £,), (&4, po) (o> &2) (€5, 1)
corresponding to the sides BC, CD, C'D’, B'C/, respectively. It may be written by means of
the impulse function in the form of the single function

mg = n1(0, po) +1(po, 1) +mI(Zy, &5) (3.7)

Substituting (3.7) into the equilibrium equation (2.9), and integrating, taking into
account the boundary conditions:

m(0) =n:  mf) =m(l;) =m(l)=0

we obtain
2 3 2 3
m, = n(l —%)1(0, 51)—’1[5(%— 1) ~In ﬂl(él, po)— [2”—%(;)2—5%)- In é%]I(po, £2)
+£—;(p—iz)(1 — )+ p+E(E 1) (3.8)
=1

here the limit load is
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(3.9)

The coordinates ¢,, &, describing the range of negative moments are defined by the
system of equations:

A

1=01+&+8)m (3.10)
3 (a8 & £
Tol1=22 1+ In22—pIn2t=0. G.11)
2”( f%)+ Po 1 Po

The stress profile on the surface of mechanical properties is shown in Fig. 4.

From (2.2), (3.7) we obtain that %, = 0in the intervals (0, £,), (¢, 1) and that %,+ %, =0
for (¢4, &,). This may be written as follows :

hvd 1 s’
W+ 518y, S = 0.

Integrating this equation we have:

W= wo——woc{,ﬁl(O,él)-f- 1+ 2 \ne, 6+ <24 P G, )b (3.13)
¢1 & & &

(3.12)

From the boundary condition vw(1} = 0 we obtain

c=¢&, (1+c2 In 22)

1
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It is easy to see that v’ is continuous, W’ possesses jumps and at that J-functionst are
involved in w"”.

Now we shall define the bound of validity of the given solution. Thus m,p) reaches
the analytical maximum for

p=p =+ > &, p=0

and the non-analytical minimum for p = p,, Fig 4. The validity region is defined by
the next conditions

mipo) <O, fiz <0, (3.14)
¢, €0, frz=Inpe—[n3—In3n)—1}2(1—1n) = 0, (3.15)

2
mipo) = —1, 23204550, fys = £ po)~0T3p0 > 0, (316)

C"‘ &
where &,(1, po) is expressed by (3.10-11). The condition m,(p,) < 1 is always satisfied.

Solution 3

When the inequality (3.15) is not satisfied, the range with the negative moment m,
extends on the whole to the stronger part of the plate. Then

my = 110, po)+1(po, 1)+m,I(E4, 1) (3.17)

Using the equilibrium equation and the boundary conditions m(0) = n,m/(&,) = m(1) =
we have

3 (2
m, = 11( sl)I(O &)— 'I[ (gz l) _]néjll(fl’p()) [252(‘) 1)—lnp:|1(p0, 1) (3.18)

where the parameter £, is defined by the relation

1 3p1 39

nln— +—= + Dinpy, =0 3.19
él 2 62 (’1 ) Po ( )

and the limit load is expressed by formula (3.9). It is easy to see that relations (3.17),

(3.18), (3.19), can be obtained from (3.7), (3.8), (3.11), if we set £, = 1. Similarly, the velocity

field is given by:

IO, &)+ (1 +1In —)I(él, 1)} c=1/(1-In&)). (3.20)

W = WO-—WOC{

¢ &
The bounds of validity for the solution are as follows:
ml) =1, f53<0, (3.21)
mlpe) = =1, f4<0, 1= pjlnpo/(1-815p5—2:815). (3.22)
In the last condition the relation (3.19) has been used.
Solution 4

Let the division parameter p, in the solutions 2 and 3 be chosen. For a certain value

T The interval (0, a) is understood as (—¢, @) and the interval («, 1), as (x, 1+¢) where ¢ > 0. It leads to
relations :

100,2) = §(x)—(x —a) = —d(x—a) for 0 x< L
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n = n* in (3.16) an equality occurs (for the solution 2) or (3.22) (for the solution 3). It
corresponds to the case when

mJlpo) = —n*, T =0730, 1n=1"po) (3.23)

thus the state D is realized on the contact annulus (see Figs. 2 and 4). In this case the rates
%,, %, are not unique for p = p, in (2.2). In other words, for 4 = #* the plastic hinge on
p = po may develop. The hinge appears in the weaker part near the contact annulus.

A further decreasing of # leads to a new destruction scheme with the plastification
of the weaker part only. That part will behave then as a clamped one in the rigid external
annulus (see Fig. 5).

For this case we obtain the stress profile m/(p), m,(p) from the profiles (3.7), (3.8)
setting n = n*, &, = &% and decreasing the scale, e.g.

m, = E";miz’(p,n*, &1, £8),
(3.24)
n

m, = Fmg)(p’ ’7*7 éT, é;)
for f,; < 0. The terms with I(0, £¥), I(£%. po) describe then the known solution for the
clamped plate with the radius pyR, instead of the terms with I(py, £%), 1(£%, 1) which des-
cribe the extrapolation of the stress profile into the rigid part. This extrapolation lies
inside the surface of the mechanical properties.
In the same way we have

.3

me= e ), mg = Cmp, %, €0) (325)

for f,3 = 0.
The profiles (3.24), (3.25) differ one from the other in the extrapolation only.
The limit load is:

4y = 11‘26—[—)— (3.26)
[}

Making use of (2.2), (3.24) and of the condition w'(py) = O we obtain the kinematic
of the initial motion in the following form:

W= wo{(l —cEp:)I(O, 51)—*—':1 —c(l +In —g)]](g“l, po)} (3.27)

where ¢ = 1/(1 +1n pg/&,) (Fig. 5). Using formula (2.8) we see that w' is a step function,

f
5
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while
Wl Wol
W' = =3 1(Ey, po)+—— d(p— po). (3.28)
p- . Po

The function of Dirac appearing in this equation represents the plastic hinge: it
provides the infinite value of the rate of change of radial curvature. When we use a nota-
tion of this kind there is no need for separate consideration of plastic hinges. e.g. in the
case of calculating the power of dissipation.

The complete set of all solutions is represented in Fig. 6.

?1
1 ™~
~
AN
N
AN Ta
AN
N
~
\\
14 \\
=
£
22 £e0
A 3
B0 4 b0
] 1 [
Fic 6.

It is easy to see that in each case there exists a continuous transition of all functions
and quantities through all division lines between the regions of validity of the solutions.

The lines = 1, py = 0 correspond to the homogeneous plate with the limit moment
equal to M,

The line p, = 1 corresponds to the homogeneous plate with the limit moment nM,,.
The dotted line dividing the region 1 corresponds to my{p,) = 0.

The determination of the bound of the region 4, fo4(n, po) = O, fa4ln, po) = 0, seems
to be the most important aspect resulting from the solution. For the values of division
parameter p, and non-homogeneity parameter n lying above these lines. both parts of the
plate in the limit state work together. For po.n below them only the central part flows
in the limit state; therefore the material in the circumferential annulus is not entirely
exhausted. An engineering aspect of the remark is the following: when the stronger part
is designed as the clamped ring for the central plate, the selection of the division parameter
po defines uniquely the smallest requisite ratio of limit moment of the annulus to the
plate limit moment, = »*
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One can make two qualitative observations which can be deduced from Fig 6. For
every po:

(a) if n > 4, then the radial moments in the plate do not exist,

(b) if = 5, ~ {1 both parts of the plate collaborate in the limit state.

4. ISOTROPIC PLATE WITH A STRONGER CENTRAL PART

In this case the description of the plate behaviour is simpler than that in Section 3.

Solution 1

Similarly as in Section 3, we assume that the stress profile of m,, m, corresponds to
sides B'C’, BC. Then

my = 10, po)+n(po, 1). (4.1)

Substituting the relation into the equilibrium equation, integrating, and taking into
account the boundary conditions m(0) = 1, m,(1) = 0, we obtain:

o B n+poll=n) [2 poll—1) ]
m, = {1 p [n+po(1 n)J}I(O, po)+————p (I=p)ip +p+_—n+po(1—n) I(po, 1)

(4.2)

and the limit load:

q1 = 6[n+po(1 —n)) 4.3)

The velocity field is described by formula (3.4). For 5 = 1 or p, = 0 the obtained rela-
tions which are identical to those for a homogeneous plate with limit moments M, and
nM,, respectively.t

The analysis of (4.2) shows that m, is a monotonically decreasing function of p. The
validity region of the solution is bounded by one condition only (see Fig. 7):

mlpo) < nMy, 1 = n*po) = (1—pd)/(L+pd—p3) (4.4)

Solution 2

When for a fixed p, the non-homogeneity parameter decreases to n = n*, then on
p = po we have m, = nM, (point B’ on Fig. 7) and the plastic hinge may develop.

For n < n* the kinematical scheme relates to the motion of the stronger part as a
rigid body.

The external weaker part is plasticised, behaving as an annular plate clamped in
vertically movable internal bound p = p,, loaded by the perpendicular pressure P and
by the annulus of shear force

2p2

ppoR
g =""5— on p=po

The solution takes the form:

n

n
m, = ”—*m‘,”(P. n*),  my= ;;;mi,”(p, n*) (4.5)

+ For the case p, = 0 the point p = 0 1s evidently a singular point.
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where the terms with I(0, p,) represent the stress profile extrapolation into the rigid region
and lying inside of the mechanical properties surface.
The limit load is equal to

6nM,
= (4.6)
=)
and the velocity field is described by formula
_— . 1-—p
w = Wwol(0, Po)+wO1 p I(po, 1) 4.7)
—Fo

The bounds of validity for the above solutions are given in Fig. 8. The region without
collaboration is bigger than for the case in Fig. 6. The bounding lines agree with our
intuition,

Finally, let us consider the simple example of the optimization of py,# parameters.
In Section 1 we have considered that the plate with a jump in its thickness is a particular
case of a plate with a jump of non-homogeneity.

In this case we have

2
n=jr M) = hI0.po+h b, 1) @8)

Let us formulate the extremal problem as follows: in the considered class of plates with
volume V; we seek the plate with the largest carrying capacity. It is evident that its limit
behaviour is described by the solution 1, Section 4.
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P9

Fi1G. 8.

For comparison we introduce the plate of constant thickness and volume V, Its
thickness is h, = h.[p§+n*(1~p})] and the limit load is
. = 6[p3+n*1—pR)l, M, = joohi. (4.9)
We denote by
41 _ N+pol—mn)
Q(pon) =1t = JTEE T
Pl = g, T b nii—pd)
the ratio of the limit loads for jump non-homogeneity plate and for the above one.
In such a way the problem is reduced to the determination of

(4.10)

sup Qpo. ), (po.m)eD

where D is the closed region of validity of the solution 1. It is easy to see that
é
00,7) = 0(po, 1) = 1 and 59<0 for 0< pon < L. @4.11)
on

It means that sup Q(py, 1) is reached on the bounding line I:
1 = *(pg) = (1~ )1 — p3 + p§).
Substituting the value of 5 into {4.10) we have
Ql, = [p3(1+ p3— p3) +(1— p3)(1 = p3)E] (4.12)

The consideration of the maximum of the function F leads to the next optimal values of
parameter

h_
po 079, nx 045 o=~ 067 (4.13)

1

Substituting them into (4.10) we get:

sup Qlpo, ) = 1'15,  (pg, )€ D. (4.14)
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Thus the simplest form of the advantageous redistribution of the material in a plate
containing one change of the thickness increases the carrying capacity by 15 per cent.

5. ORTHOTROPIC PLATE WITH JUMP NON-HOMOGENEITY

The consideration of orthotropic plates with jump non-homogeneity is of practical
importance. Many examples of such kind are given by reinforced concrete plates.

We shall consider now the circular plate composed of two concentric parts. Limit
relations for both parts have been presented in Fig. 9. Next M, denotes the circumferential
limit moment for the internal part.

me
1

a 3 My

FI1G. 9.

The limit condition for the whole plate takes the form:

FEmax{y—"’, y—', -A—l—'—y—q—’}—M(,:O (5.1)
fliilelle f
where the non-homogeneity functions are described as follows:

f(p) = IO, po)+ Al(po, 1), g(p) = al(0, po)+ Bl(po, 1). (52)

Parameter p, has the meaning defined in Section 2, parameter A defines the jump of
the circumferential limit moment. The orthotropy coetficients for internal and external
parts are a, fi/4, respectively. Thus it seems that our problem is characterized by four
independent dimensionless parameters

Po: AP (5.3)

The number of their combinations having practical meaning is considerable. In this paper
we shall investigate only the particular case

A=1 0<af<l (5.4)

As it will be seen, the cases o, # > 1 are also considered. The equality 4 = 1 means (for
reinforced concrete) that the circumferential reinforcement is uniformly distributed in
the radial direction.



506 J A KOnNiG and J. RYCHLEWSKI

Solution 1

For some variation ranges of po, « f§ parameters p,, f characterizing the jump non-
homogeneity have no influence on the limit state. The solution for this case is well known,
{7], and may be written in the form:

m, = ( a+g~p2) 10,9+ 1 1) (5.5)

_ 1 g |1

The stress profile on the mechanical properties surface is represented in Fig. 10. The limit
load is

2(1 -
=2 = ) (5.7)

where the parameter £ may be obtained from the equation
21 -)E3 -3 +(1—a) = 0, (5.8)

The second term in m, monotonically decreases with p and m(£) = 0. The conditions
bounding the validity of the solution have the form (compare with Fig 10)

{me
1
I a
&
“r
FiG. 10

= 203 —3p3+1

{<po (ora<f), fiz=a—u*20, 3
2p5+1

(59

1 1- 1
mlpo) € p (fora>f), fia= ﬂw(l—);—p%)—jf;-i—(;;—l) =0 (5.10)

Solution 2

When the parameter « in the solution 1 decreases to a*, then ¢ increases to p,.
The stress profile for the central part must remain on the side m, = «, while the stress
profile for the external part is on the side m,, = 1. It leads uniquely to the situation shown
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in Fig. 11. The jump of m, on p = p, is associated with the jump of the first derivative

’

m,,

1—my(po—0)

Po

pomy,, = Myl ie.  mlpy+0) = (5.11)

and thus the moment m, increases beginning with p = p,. Setting £ = p, in (5.5), (5.6)
we obtain the formulae for m,, m,. The limit load is

_ Sl —po(1—0]

q (5.12
2 1— pg )
The radial moment m, is extremal for
_ = pol(l=0)—~pf]
P =P = M= poll—a)]
The range of validity is defined by the conditions:
Px Z Po  J1ala, po) <0, (5.13)

my(py) < B, f23=B—143271~pd) 1 —po(l—)PF[(1 )~ p3Fp§ 2 0.  (5.14)

Solution 3

The analysis of statics and kinematics of the plate shows that if the inequality (5.14) is
not satisfied, then the state m, = f is realized in one part of the plate. The stress profile
assumes the form:

my = (ngz) 10, po) + (ﬂ+§é%) 1po, &)+ (ﬂ+§p2)l<¢1, E)HIE D, (519)

2 2 1 1
m, = o0, po)+[ﬁ+%(3—§—%—2%)] Ipo, £+ BILE:, 52)+[(;—p2) —(;— 1)]1(52, 1

(5.16)
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and the location on the mechanical properties surface is given in Fig. 12.

FiG. 12.

The terms with I(p,, £,) represent its part lying inside this surface and constitute the
extrapolation of the stress field into the rigid range.
The limit load is given by the formula:

2(1—-
3= ( 3 A (5.17)

&

where the coordinates &,, £, are defined by the system of equations
21-p)E3-35+(1-p) =0, (5.18)
6(8—
283 =38 +p3— (ﬂq % po = 0. (5.19)
The range of validity is defined by the conditions:

§1 2 poy fis=p—0 20, (5.20)
¢22¢, fiasO (5.21)

Solution 4
If the parameter § in the solution 1 decreases and the remaining parameters are con-
stant, then the stress profile takes the form as in the Fig. 13 and is described by formulae:

my = (a+§ 2)1<0, &)+ (a+§&) 11 po) +1(p0, 1) (522)
éZ 2 C“ 2 3
m, = al(0, &)+ l}z—%—l(—g?+2;1—3)]l(£l,po)+[%ﬂ+(l ——’;)—") ~q—gi(1—£§)]1(,zg,o1§.)

The terms with I(¢, p,) represent the profile part located inside the surface of the mechani-
cal properties. The limit load is defined by formula (5.7); here & must be replaced by B.
The coordinates &, can be determined from the equation (5.8) but « and  must be inter-
changed.
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FiGg. 13.

The solution is valid when the following conditions are satisfied:

mype)l 20,  fi4 <0, (5.24)
mlpo+0) <0, Jas=B~p* =0, B* = a*, (5.25)
120, fae=B~(1—pdo—pilpo—1) = 0. (5.26)

Solution 5

When the condition (5.20) is not satisfied, then in the external part the region with
m, = B appears. The stress profile is described by the relations:

m, = (a+2 )1(0 &)+ (oc+ C)I(fl,ng— (ﬂ+%p2)1(po, )+ D (527)

_ ‘162 ¢
= al(0, &)+ a— BN 624‘2“— (&4, po)+ Bl(po, £2)
B{, <2
+ [1 --—3——(2 -i—é2 )]I(fz, 1). (5.28)

The limit load is given by (5.17), the coordinate &, by (5.18), £, is determined from for-
mula (5.19) with « and g interchanged.
The validity region is defined by the following conditions:

$i1 < poy  fas=P-a <0, (5.29)
&2 2 pos Jas = —P* <0, (5.30)
& =0, fs1=B—=14327%p52a— By [pE—(a— P} = 0. (5.31)

Solution 6

When in the solution 4 the coordinate £, tends to 0, then the part of the stress profile
of the internal annulus lying inside of the surface of mechanical properties becomes
larger and larger. Beginning with ¢ = 0, the parameter « has no effect on the solution.
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The stress profile’is described by the following formulae:

m, = (ﬁ+g€9>1(0 po)+1(po, 1), (5.32)

2 1 1
[B+qpo ( - )] ,(O,po){(;_l) +g(;_pz)] el (53)

where the quantity q is defined by (5.12). The shape of the stress profile is shown in Fig, 14.

The region of validity for the solution is defined by the conditions:
m(0) <o,  fie <0, (5.34)
mipo+0) <0, fer=fis=p-p*20. (5.35)

Solution 7

This solution results from the solution 6 when the condition (5.35) is not satisfied, or
from the solution 5 when the condition (5.31) is not satisfied. The stress profile, given in
Fig. 15 is described by the formulae:

2
(.3+g£9)1(0 Po)+ (lg+—)l(Po &)+ 1{po, 1) (5.36)
qpo p’ &, a8 (&
B+==1==5 |10, po)+ Bl(po, &2)+| 1~ (1 - ﬁ)——— “*7 I(po, 1) (5.37)
Po P 51

where the coordinate £, is defined by the equation (5.18), and the limit load g by formula

(5.17).
The solution 7 is valid if the conditions:
mO) <o,  f57 <0, (5.38)
&2 = pos fer <0, (5.39)

hold.
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The kinematics of the beginning of unconstrained plastic flow is described by the
formula

1—
W = 1ol(0, t)+w0-1-t’ti1(t, 1) (5.40)

where t is equal to ¢ for solution 1, p, for solution 2, 4, 6, &, for solutions 3, 5, 7. The
coordinate p =t defines the location of the plastic hinge. For the solutions 2, 4, 6, the
hinge develops on the contact annulus where the jump of the mechanical properties of
the plate exists.

In the C; space of the py, a, f parameters the surfaces

f12 =0, f14 =0, f23 =0, fss =0, f45 =0, f46 =0, f57 =0, f67 =0 (5.41)

separate the cube 0 < «; f, p, < 1 into seven regions of validity of the derived solutions.

N

&
Fi. 16.

The nature of the division is schematically shown in Fig. 16.

When po— 1 then R {1,0}; S,P-{0,0}; T,Q - {}0}
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When py—0 then P,Q,R-{1,1}; T-1{0,0};: S—{01}.

Constructing the above solutions we assumed that a, § < 1. In fact, these restrictions
are not essential. It is easy to see that the solutions 1,2 adjacent to the line § =1 are
independent of § (compare Figs. 10 and 11) and are valid also for § > 1.

Similarly, the solutions 6 and 7 do not depend on « and are valid for « > 1. For the
case a > 1, ff > B the classical solution for an isotropic, homogeneous plate is valid.
This solution can be obtained from the solution 1 for o = 1.

We have given the complete analysis of the case of A = 1. This assumption gives the
solutions without negative radial moments m,. When 1 # 1 (e.g. the jump of the circum-
ferential limit moment can exist) the regions with m, < 0 may develop as for the isotropic
plate (see Sections 2, 3, 4).
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Résumé—Dans plusieurs problémes pratiques, le besoin se fait sentir de considerer les corps dont la non-
homogénéité est decrite par des fonctions discontinues.

Le sujet de ce rapport est la determination de la capacité portante de plaques circulaires simplement
supportées, soumises 4 une pression uniforme et composées de parties annulaire concentriques ayant des
propriétés mécaniques differantes. Cette discontinuité des propriétés mécaniques peut etre causée par une
discontinuité de I’épaisseur de la plaque ou par une discontinuité des propriétés du materiau.

Pour les plaques isotropes il y a six solutions différentes qui dependent des paramétres determinant la
nonhomogéité et la division de la plaque. Dans chaque cas particulier on a trouvér les champs des moments,
les champs des vitesses et la charge limite. L'éspace de validité de toutes les solutions est établi, le probléme de
la forme optimum dans la classt de ces plaques est également considéré.

La seconde partie s’occupe spécialement des plaques orthotropes, tout particulicrement d’une plaque en
beton armé avec distribution uniforme de I’armature circoférentielle. Dans ce cas également. 1l y a sept solutions
differentes qui dependent des parametres caracteristiques.

L’analyse ci-dessus a permi de tirer quelque conclusions qualitatives concernant 1a formation de plagues
isotropes et orthotropes & nonhomogénéité discontinue.

Zusammenfassung—In vielen praktischen Fragen ist es notwendig, Korper, deren Nichthomogenitit von
unstetigen Funktionen beschrieben ist, zu betrachten.

Der Gegenstand dieser Abhandlung ist die Bestimmung der Grenztragfahigkeit der frei drehbar gestiitzten
mit gleichméssigem Druck belasteten Kreisplatten, die aus konzentrischen ringférmigen Teilen von verschied-
enen mechanischen Eigenschaften bestehen. Dieser Sprung der mechanischen Eigenschaften kann von einem
Sprung der Plattendicke oder von einer plétzlichen Veridinderung der Stoffeigenschaften verursacht werden.

Fiir das Problem der Grenztragfihigkeit einer isotropen Platte gibt es sechs verschiedene Ldsungen, die
von den Werten der Nichthomogenitits- und Teilungsparametern abhiingen. In jedem einzelnen Falle werden
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Momenten- und Geschwindigkeitsfelder, Grenzlast sowie Giiltigkeitsbereich der Losung angegeben. Die Frage
der optimalen Gestaltung von Platten der obigen Klasse wird auch untersucht.

Im zweiten Teil werden die orthotropen Platten erdrtert. Als Sonderfall wird eine Stahlbetonplatte mit
gleichmissiger Verteilung der Ringbewehrung betrachtet. Hier gibt es sieben verschiedene von Parameterwerten
abhingige Losungen.

Die durchgefiihrte Analyse gestattet gewisse qualitative Schliisse iiber die Gestaltung der isotropen und
orthotropen Platten von unstetiger Nichthomogenitit.

AGcTpakT—MHOTHE NPHKIANHBIE 32124y [IPHBOIAT K HEOGXOAUMOCTH PACCMOTPEHHUA TeST, HEOXHOPOAHOCTD
KOTODBIX OMUCBIBAIOT Pa3pPbIBHbIC QYHKIMA.

TipeaqMeToM HacTosulelt CTaThu ABJIAETCA ONpeAenenue Hecyiuel cnocoGHocTH cBoboano omepTbix
KPYIrAibIX TUIACTHHOK, COCTOSILMX W3 KOHUEHTPUYECKMX KOJIBHEBbIX 4acTedl pasnuyHOff MPOYHOCTH,
HArpyXeHHBIX PaBHOMEPHBIM JaBieHHEM. CKadoK NPOYHOCTH MOXET ObITh HBI3BAH CKAYKOM TOMUMHBI
WM CKAYKOM MEXAHUYECKUX CBOUCTB MaTepuana.

3aBUCHMOCTH OT 3HAYEHUH nNapameTrpa HEOJHOPOAHOCTH M MapaMeTpa ACNECHHSN, 3aha¥a O Hecylueit
cnoco6HOCTH M3OTPONHON MIACTHHKH MUMEET LIECTb PA3IMYHBIX peueHi. [ind Kaxaoro Ciayvyas ykasaHbl
pacnipeieieHHs MOMEHTOB, CKOpocTH mnporufa a Taxkke npeaensHas Harpysxa. Jaubl npeaesbt
NPHMEHHMOCTH TIOJIYYEHHBIX peiuesuii. OGcyxaaercs 3aaaya o ONTHManbHOW (OPMe MIACTHHKH pac-
CMaTPHBAEMOro KJacca.

Bo Bropoii 4aCTH H3y4aIOTCA OPTOTPOMHbIE MIACTUHKH, OGCYXkmaeTcs YacTHli Ciyyail xene306eToHHOI
NJACTHHKA ¢ PABHOMEDHO PacHpelesieHHON mo Nydy OKpYXHOH apMHMpPOBKOi. 30ech, B CBOIO ouepelb, B
COOTBETCTBHH CO 3HAYEHHAMH NAPAMETPOB, HMEETCA CeMb DA3IHYHBIX PELICHHIA.

TpoBeneHHOE HCCNEAOBAHHE NPHBOAHT X HEKOTOPBIM Ka4YeCTBEHHBIM BLIBOAAM OTHOCHTENBHO
TIPOCKTHPOBAHUA M3OTPOMHEIX H OPTOTPOMHBIX NMIAACTHHOK C PAa3pPbIBHON HEOJHOPOXHOCTDHIO.



