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LIMIT ANALYSIS OF CIRCULAR PLATES WITH JUMP
NON-HOMOGENEITY
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Instttute of Fundamental Technical Problems, Pohsh Academy 0f SCIences, Warsaw, Poland

Abstract-In many practical problems the need anses to considcl bodIes whose non-homogeneity IS descnbed
by non-continuous functions.

The subject of the paper is the determmation of the carrying capadty of simply supported circular plates.
loaded by uniform pressure and composed of concentric annuli with different mechanical propertie~. The
above jump of mechanical properties may be caused by jump of plate thIckness or by change of material
propertIes.

Depending on the values of non-homogeneity and the dh ISlOn par,lIneters there eXIst SIX different solutions of
the consIdered problem. In each parttcular case the 1110Illcnt field. \dOCll)! field and hmIt load are gIven The
ranges of validIty of all ,olutions are estabh,hed Aho, thc problem l)f optimum design m the above class of
plates is considered.

In the second part an orthotroplC plate is dlscu~sed The specIal case concernmg the uniform dIstribution
of circumferential reinforcement in the case of a remforced concrete plate IS considered. Here ag,tin, depending
on different parameters, there may be seven solutIOns.

The above analySIS has allowed some qualitatIve conclUSIOns to be drawn concernmg the deSIgn of Isotropic
and orthotropic plates WIth jump non-homogeneity.

1. INTRODUCTION

A CONTINUOUS medium possesses jump non homogeneities if there exist surfaces in which
the values of material constants suffer jump changes. This non-homogeneity is described
by discontinuous functions. Problems with such jumps constitute a compn:hensive class
of essential practical importance and aIso have interesting theoretical aspects.

Recently, the behaviour of an ideally plastic material with a discontinuous distribution
of yield limit has been explored, [1]. Papers [2,3] are devoted to the problems of plane
flow. while in [4.5], the carrying capacity of bars. composed of a number of materials,
in torsion has been analysed.

In the present paper we consider some examples of limit analysis of plates with jump
non-homogeneity. Within the frame vi the theory of li'11it analysis it is assumed that
mechanical properties of plates at genenc point are completely defined by the shape of the
limit surface in the space of bringing moments AI 11' M n , M 12: F(Mall , Cv) = O. The plate
is called plate with jump non-homoKeneity if its middle surface may be divided in 11 regions
Gil with the limit surface being constant inside of each region, but differing on their
bounds F I, O.

Very often. but in general not always, the form of the functions F
I
, as functions of

M.II is identical for the whole plate with different constant Cv for each region G1" In this
case jump non-homogeneity is described by piece-wise constant functions Cv(x l' X2)'

where x I' x 2 denote the coordinates of the middle surface.
The reasons that two adjacent parts of the plate IUl\e ditferent properties may he
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of various kind. In the simplest case ofa plate which is isotropic and homogeneous akng its
thickness, with the limit surface of the form F = ML - M 11 M 22 +ML +3Mfz - M6 = O.
we have M o = (JoH2 where (Jo is the yield limit and 2H denotes the plate thickness.
The jump of M o may be produced either by the jump of (Jo or by the jump of H. The plate
with two different structures along its thickness gives another example. The jump in
reinforcement percentage in the concrete plate is the typical example of jump non­
homogeneity in the case of orthotropy.

Our paper is based on usual fundamental assumptions of limit analysis of plates. [6].
Thus the local three-dimensional states of stress and strain in the neighbourhood of
contact surface between the parts with various mechanical properties are not taken into
account.

2. FORMULATION OF THE PROBLEM

We shall consider the circular plate composed of two concentric parts of various
mechanical properties. For instance let us take the simple case when our plate is loaded by
a uniform pressure p and simply supported on its circumference. Fig. 1.

p

~1 R ~J
1

FIG. 1

At the beginning we shall discuss isotropic plates. We assume the validity of a limit
relation obtained from the Tresca yield condition

(2.1)

where m, = M,/Mo and m", = M",/Mo are dimensionless radial and circumferential
bending moments. respectively, M o is the limit moment in the stronger part. The associ­
ated flow rule takes the form

. ." of w' of
x, = -w = am,' K", = pam", (2.2)

where X" xq> are curvature velocities multiplied by R 2 (R is the plate radius), p denotes the
radial coordinate related to R. a prime denotes differentiation with respect to p.

The jump non-homogeneity of the plate is described by the function J(p). For the
plate with the weaker central part we have:

(2.3)

while for the other case:

(2.4)
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where

(2.5)rx < 13.

and l(rx,f3) is a function called the rectangular impulse, i.e.

l(rx, 13) == H(x-rx)-H(x- 13) == {~: ::: < 13,

0, 13:(; x

Here H(x) is the Heaviside function. In these cases, when the purpose of the function
l(rx,f3) is not only to shorten the notation and make it clear, we make use of the following
obvious relations

l(rx, 13). l(y, 15) = l(y,f3), rx < y < 13 < 15 (2.6)

f>(t)l(rx, 13) dt = l(rx, f3)J: f(t) dt + 1(13, 1) f>(t) dt, 0 < rx < 13 < 1 (2.7)

dd
x

[f(x)l(rx, P)] = f'(x)l(rx, f3) + f(rx)15(x - rx) - f(f3)15(x - 13) (2.8)

where 15(x) denotes the Dirac function.
The quantity Po as before will be called the division parameter, while the quantity '7

defining the limit moments ratio is the non-homogeneity parameter (Fig. 2). The equilibrium

A'
1 m,.

~--_rB

.;.=- ---,B'

£L..----r

£'I.-.--------r

Dt

FIG. 2.

equation takes the form:

I 1
mr+-(mr-mtp) = -!qp,

p

and boundary conditions are the following:

(2.9)

p = 1: w=mr=O (2.10)
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p = 0: (2.11)

The purpose of the paper is to investigate the influence of parameters Po, I] on the
carrying capacity and on the kinematics of the beginning of the unconstrained plastic flow
of the plate.

In Section 5 the practically important, but more complicated case of the orthotropic
plate will be considered.

3. ISOTROPIC PLATE WITH A WEAK INTERNAL PART

When I] is close to 1, the solution should be close to the well-known solution for the
homogeneous plate, irrespectively of Po. From this remark Solution 1 follows:

Solution I

We assume that the stress profile is placed on the sIde Be for the internal part and on
the side B'C' for the external part of the plate e.g.

(11)

The jump of nl<p for p = Po is statically admissible. Substituting (3.1) into (2.9) and making
use of the second relation (2.11) we obtain

nlr = _i p2 + If" r1]1(0, Po)+ /(Po, l)f dp = (11- (1 p2) /(0, Po)
6 P il 6

+[I-~p2_1;;)(1-I]~/(Po,I). (3.~)

The quantity of limit load yields from (2.10),

0.3)

From (2.2), (3.1) we ha' e /{r = 0 for the whole plate. In this way

(3.41

thus the above kinematics of the destruction cOlI1cides with that for a homogeneous plate.
For Po = 0 and II = I formulae (3.1), (3.2). (3.3) also gi\(~s the known solution.

It is convenient to represent the stress profile in a three-dimensional space of mr, 1Il<p' j!.

In this space the limit relation (2.1), (2.3) takes the form of the surface shown in Fig. J
As before, this surface will be calkd the slirfuce of the 11lechunical pro[1ert it's.

Now we shall define the bounds af ,alidlty of the given "alution. It IS easy to sec that
/Ilr(P) decreases monotonically from 'I (for p = I) to 0 (for p = 0) if

For

we have
(3.51
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Thus mr reaches the analytical maximum for P = p" P = °and the non-analytical mini­
mum for P = Po (Fig. 3).

FIG. 3.

It means that '1 is sufficiently small for the given Po and the weaker region is partially
clamped in the external stronger annulus.

The solution holds when

mr(po) ~ 0, il2 == '1- (P6 - p~)/(I- p~) ~ ° (3.6)

It may be demonstrated that the condition mr(p.) ~ 1 is always satisfied.

Solution 2
In the case when the inequality (3.6) is not satisfied, the negative moments mr appear

in both parts of the plate. The stresses in the intervals (0, e1)' (e l' Po), (po, e2), (e2, 1)
corresponding to the sides BC, CD, C'D', B'C', respectively. It may be written by means of
the impulse function in the form of the single function

m", = '11(0, Po)+I(po, 1)+m,](e1' e2) (3.7)

Substituting (3.7) into the equilibrium equation (2.9), and integrating, taking into
account the boundary conditions:

mr(O) = '1:
we obtain

( p2) [3(p
2

) pJ [3'1 pJmr ='1 1-
ei

I(O,el)-'I"2 ei- 1 -ln~ I(e1'po)- 2~i(p2-~~)-ln~2 I(Po'~2)

+ ;2(p-~2)(I-p)(l+p+e2)I(ez,l) (3.8)
P.I

here the limit load is
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(3.9)
61]

q2 = c.2'
.\

The coordinates ~ l' ~2 describing the range of negative moments are defined by the
system of equations:

(3.10)

(3.10

The stress profile on the surface of mechanical properties is shown in Fig. 4.

®

FIG. 4.

From (2.2), (3.7) we obtain that xr = °in the intervals (0, ~ 1)' (~2' 1) and that %r + %q> = °
for «( l' (2)' This may be written as follows:

1
"V +p[(~I' ~2)W' = 0. (3.12)

Integrating this equation we ha\ e:

W = Wo- woc{;\ [(0, ~1)+ (1 + In ;J[(~I' ~2) + (In ~: + ;2) [(~z, o}. (3.13)

From the boundary condition "'(1) = 0 we obtain

c = ~2/ (1 + ~2In ~:).
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It is easy to see that w' is contirtuous, w" possesses jumps and at that <5-functionst are
involved in w"'.

Now we shall define the bound of validity of the given solution Thus mr(p) reaches
the analytical maximum for

P = P* == (~2 +!~W > ~2' P = 0

and the non-analytical minimum for P = Po, Fig. 4. The validity region is defined by
the next conditions

f12 ~ 0,

f23 == In Po - [,,(3 -In 3,,) - 1]/2(1 -,,) ~ 0,

(3.14)

(3.15)

p2 p2
mr(po) ~ -", In ~i-3 ~i+5 ~ 0, f24 == ~1(",Po)-0'73po ~ 0, (3.16)

where ~1('" Po) is expressed by (3.10-11). The condition mr(p*) < 1 is always satisfied.

(3.19)

Solution 3

When the inequality (3.15) is not satisfied, the range with the negative moment mr

extends on the whole to the stronger part of the plate. Then

mq> = ,,1(0, Po) + 1(po, l)+mr1(~l' 1) (3.17)

Using the equilibrium equation and the boundary conditions m.(O) = ", mr(~ d = mr(l) = 0
we have

mr = "(I-~;)1(O, ~1)-{~(~; -1) -In ;JI(~l'PO)-[~~i(P2-1)-lnPJ1(Po, 1) (3.18)

where the parameter ~1 is defined by the relation

1 3" 1 31]
,,In--- 2 +-+(,,-I)lnpo = 0

~1 2 ~1 2

and the limit load is expressed by formula (3.9~ It is easy to see that relations (3.17),
(3.18), (3.19), can be obtained from (3.7), (3.8), (3.11), if we set ~2 = 1. Similarly, the velocity
field is given by:

w = wo-woC{;/(O, ~1)+ (1 +In ;J1(~b l)}, c = 1/(I-ln ~1)' (3.20)

The bounds of validity for the solution are as follows:

(3.21)

(3.22)mr(po) ~ -1], f24 ~ 0, ,,~p~lnpo/(1·815p~-2·815).

In the last condition the relation (3.19) has been used.

Solution 4

Let the division parameter Po in the solutions 2 and 3 be chosen. For a certain value

t The interval (0, a) is understood as (-E. a) and the interval (a, I), as (a, I+ E) where E > O. It leads to
relations:

1(0, a) = (j(x)-(j(x-a) = -(j(x-a) for 0.,:; x":; 1.
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17 = 17* in (3.16) an equality occurs (for the solution 2) or (3.22) (for the solution 3). It
corresponds to the case when

(3.23)

thus the state D is realized on the contact annulus (see Figs. 2 and 4). In this case the rates
icn icq> are not unique for P = Po in (2.2). In other words, for 17 = 1]* the plastic hinge on
P = Po may develop. The hinge appears in the weaker part near the contact annulus.

A further decreasing of 17 leads to a new destruction scheme with the plastification
of the weaker part only. That part will behave then as a clamped one in the rigid external
annulus (see Fig. 5).

4

FIG. 5.

..

(3.24)

For this case we obtain the stress profile mr(p), m",(p) from the profiles (3.7), (3.8)
setting 17 = 17*, ~2 = ~! and decreasing the scale, e.g.

_ 1] (2)( *!'* !'*)mr - *mr P,1], ':.1' ':.2 ,
1]

_ 1] (2)( *!'* !'*)mq> - *mq> P,1] '':.1>':.2
11

for f23 < O. The terms with 1(0, ~n I(~t, Po) describe then the known solution for the
clamped plate with the radius PoR, instead of the terms with l(po, ~!), 1(~!. 1) which des­
cribe the extrapolation of the stress profile into the rigid part. This extrapolation lies
inside the surface of the mechanical properties.

In the same way we have

(3.25)

(3.26)

for f23 ~ O.
The profiles (3.24), (3.25) differ one from the other in the extrapolation only.
The limit load is:

1]
lJ4 = 11'262 ,

Po

Making use of (2.2), (3.24) and of the condition w'(Po) = 0 we obtain the kinematic
of the initial motion in the following form:

(3.27)

where c = 1/(1 +In POi~l) (Fig. 5). Using formula (2.8) we see that tV is a step function,
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(3.28)I WOC WOC
W' = -2I(~bPO)+-b(p-po)'

p. Po

The function of Dirac appearing in this equation represents the plastic hinge: it
provides the infinite value of the rate of change of radial curvature. When we use a nota­
tion of this kind there is no need for separate consideration of plastic hinges. e.g. in the
case of calculating the power of dissipation.

The complete set of all solutions is represented in Fig. 6.

FIG 6.

It is easy to see that in each case there exists a continuous transition of all functions
and quantities through all division lines between the regions of validity of the solutions.

The lines 11 = 1, Po 0 correspond to the homogeneous plate with the limit moment
equal to Mo.

The line Po = 1 corresponds to the homogeneous plate with the limit moment 11Mo.
The dotted line dividing the region 1 corresponds to m~(po) = O.

The determination of the bound of the region 4. 124(11, Po) = 0, j~4(11, Po) = O. seems
to be the most important aspect resulting from the solution. For the values of division
parameter Po and non-homogeneity parameter '7 lying above these lines. both parts of the
plate in the limit state work together. For Po· II below them only the central part tlows
in the limit state; therefore the material in the circumferential annulus is not entIrely
exhausted. An engineering aspect of the remark is the following: when the stronger part
is designed as the clamped ring for the central plate. the selection of the div ision parameter
Po defines uniquely the smallest requisite ratio of limit moment of the annulus to the
plate limit moment. 11 11*.
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One can make two qualitative observations which can be deduced from Fig. 6. For
every Po:

(a) if IJ ~ t, then the radial moments in the plate do not exist,
(b) if IJ ~ IJA ~ 1\ both parts of the plate collaborate in the limit state.

4. ISOTROPIC PLATE WITH A STRONGER CENTRAL PART

In this case the description of the plate behaviour is simpler than that in Section 3.

Solution 1

Similarly as in Section 3, we assume that the stress profile of mr , mcp corresponds to
sides B'C', BC Then

(4.1)

Substituting the relation into the equilibrium equation, integrating, and taking into
account the boundary conditions mrC0) = 1, mr(1) = 0, we obtain:

mr = {1-p{1J + po(1-IJ~}1(0, Po)+ IJ + P~1 -IJ) (1- p) ~2 + P+ IJ :~~(~~1J)}(po, 1)

(4.2)

and the limit load:

(4.3)

The velocity field is described by formula (3.4). For IJ = 1 or Po = °the obtained rela­
tions which are identical to those for a homogeneous plate with limit moments M 0 and
IJM0' respectively·t

The analysis of (4.2) shows that mr is a monotonically decreasing function of p. The
validity region of the solution is bounded by one condition only (see Fig. 7):

(4.4)

Solution 2

When for a fixed Po the non-homogeneity parameter decreases to IJ = IJ*, then on
P = Po we have mr = IJMo (point B' on Fig. 7) and the plastic hinge may develop.

For IJ < IJ* the kinematical scheme relates to the motion of the stronger part as a
rigid body.

The external weaker part is plasticised, behaving as an annular plate clamped in
vertically movable internal bound P = Po, loaded by the perpendicular pressure P and
by the annulus of shear force

ppf>R 2

qr = -2- on P = Po·

The solution takes the form:

_ IJ (1)( *)m. - *mr p.1J ,
IJ

(4.5)

t For the case Po = 0 the point p = 0 IS evidently a singular point.
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(4.6)

(4.7)

(4.8)

where the terms with 1(0, Po) represent the stress profile extrapolation into the rigid region
and lying inside of the mechanical properties surface.

The limit load is equal to

61]Mo
q2 = (l-p~)

and the velocity field is described by formula

W = Wol(0,po)+wo
1

1
- P l(po, 1)
-Po

The bounds of validity for the above solutions are given in Fig. 8. The region without
collaboration is bigger than for the case in Fig. 6. The bounding lines agree with our
intuition.

Finally, let us consider the simple example of the optimization of Po, 1] parameters.
In Section 1 we have considered that the plate with a jump in its thickness is a particular
case of a plate with a jump of non-homogeneity.

In this case we have
h~

1] = h~'

Let us formulate the extremal problem as follows: in the considered class of plates with
volume Vo we seek the plate with the largest carrying capacity. It is evident that its limit
behaviour is described by the solution 1, Section 4.
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1

o

2

FIG. 8.

\

(4.10)

For comparison we introduce the plate of constant thickness and volume Vo. Its
thickness is he = h+ [p~ + 1]t(1- p~)J a~d the limit load is

qe = 6[p~+1]t(l-p~)], M o = io-oh~. (4.9)

We denote by
'11 l]+po(l-1])

Q(Po, 11) == - = 2 + t(l 2)qe Po 1] -PO

the ratio of the limit loads for jump non-homogeneity plate and for the above one.
In such a way the problem is reduced to the determination of

where D is the closed region of validity of the solution 1. It is easy to see that

iiQ
Q(O,I]) == Q(po, 1) == I and - < 0 for 0 < Po. 1] < 1. (4.11)

01]

It means that sup Q(po, 1]) is reached on the bounding line 1:

1] = 1]*(Po) = (1- p~)/(l-p~+ p~).

Substituting the value of I] into (4.10) we have

QI 1 = (PW+P5-P~)t+(1-P5)(1-p~)tJ. (4.12)

The consideration of the maximum of the function F leads to the next optimal values of
parameter

Po ~ 0'79. I] ~ 0,45, h_ ~ 0.67
11+

(4.13)

Substituting them into (4.10) we get:

sup Q(po, 11) ~ 1'15. (4.14)
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Thus the simplest form of the advantageous redistribution of the material in a plate
containing one change of the thickness increases the carrying capacity by 15 per cent.

5. ORTHOTROPIC PLATE WITH JUMP NON-HOMOGENEITY

The consideration of orthotropic plates with jump non-homogeneity is of practical
importance. Many examples of such kind are given by reinforced concrete plates.

We shall consider now the circular plate composed of two concentric parts. Limit
relations for both parts have been presented in Fig. 9. Next M o denotes the circumferential
limit moment for the internal part.

FIG. 9.

The limit condition for the whole plate takes the form:

F = max{I~~I, I:'" I:'-~~I} -Mo = 0

where the non-homogeneity functions are described as follows:

(5.1)

f(p) = 1(0, Po)+ U(Po, 1), g(p) = IXI(O, Po)+ f31(po, 1). (5.2)

Parameter Po has the meaning defined in Section 2, parameter A defines the jump of
the circumferential limit moment. The orthotropy coefficients for internal and external
parts are IX, f31A., respectively. Thus it seems that our problem is characterized by four
independent dimensionless parameters

A, IX, f3. (5.3)

The number of their combinations having practical meaning is considerable. In this paper
we shall investigate only the particular case

A = 1, 0 ~ IX, f3 ~ 1. (5.4)

As it will be seen, the cases IX, f3 > 1 are also considered The equality A = 1 means (for
reinforced concrete) that the circumferential reinforcement is uniformly distributed in
the radial direction.
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Solution 1

For some variation ranges of Po, tX. 13 parameters Po,P characterizing the jump non­
homogeneity have no influence on the limit state. The solution for this case is well known,
[7]. and may be written in the form:

m", = ( a+~p2)I(0, ~)+I(~, 1) (5.5)

mr = altO, ~)+[(}_p2) ~-(t-1)J 1(" 1~ (5.6)

The stress profile on the mechanical properties surface is represented in Fig. 10. The limit
load is

2(1- tX)
ql = -,-2-

where the parameter emay be obtained from the equation

2(1-tX)e 3 -3e+(1-tX) = o.

(5.7)

(5.8)

The second term in mr monotonically decreases with P and m~W = O. The conditions
bounding the validity of the solution have the form (compare with Fig. 10)

~r
FIG. 10

e~ Po (for a < 13),

mr(po) ~ 13 (for tX > 13),

(5.9)

(5.10)

Solution]

When the parameter tX in the solution 1 decreases to tX*, then e increases to Po.
The stress profile for the central part must remain on the side mr = tx, while the stress

profile for the external part is on the side m", = 1. It leads uniquely to the situation shown
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in Fig. 11. The jump of mtp on P = Po is associated with the jump of the first derivative
m~,

i.e. '( 0) 1-mtp(po-0)mr Po + = -------"'-=-----=---'-

Po
(5.11)

and thus the moment mr increases beginning with P = Po· Setting e= Po in (5.5), (5.6)
we obtain the formulae for m" mtp' The limit load is

6[1- Po(l-oc)]
qz = 3

I-po

m,.

FIG. II.

The radial moment mr is extremal for

Po[(l-oc) - P6l
P = P. == 2[1-Po(1-oc))'

The range of validity is defined by the conditions:

(5.12)

P. ~ Po, fdoc, Po) :::; 0, (5.13)

mtp(p*):::; f3, fZ3 == f3-1+3'2-t(l-p~)-1[1-po(l-ocnl-[(l-OC)-P6ltpt ~ O. (5.14)

Solution 3
The analysis of statics and kinematics of the plate shows that if the inequality (5.14) is

not satisfied, then the state mr = f3 is realized in one part of the plate. The stress profile
assumes the form:

mtp = (oc +~pz) 1(0, Po)+ (f3 +~ei) l(po, el)+ (f3 +~ p
Z
)1(e 1, ez)+ I(ez, 1~, (5.15)

[ qei ( p
Z

eI)J [( 1 z) (1 )Jmr = ocl(O,po)+ f3+(; 3-ei -2-p l(po,el)+f31(el,ez)+ p-P - p-1 l(ez,l)

(5.16)
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and the location on the mechanical properties surface is given in Fig. 12. 

FIG. 12 

The terms with Z(p,, lr) represent its part lying inside this surface and constitute the 
extrapolation of the stress field into the rigid range. 

The limit load is given by the formula: 

2u -8) 
cl3 = 2 

52 
(5.17) 

where the coordinates 11, t2 are defined by the system of equations 

2(1-j?)rg-3<j:+(l-~) = 0, (5.18) 

W - a) 
2+3<:+p;--- 

4 
po = 0. (5.19) 

The range of validity is defined by the conditions: 

Solution 4 

If the parameter 

51 2 PO, .f35 = P-a >, 0, (5.20) 

<a B 51, f23 G 0. 
(5.21) 

/? in the solution 1 decreases and the remaining parameters are con- 
stant, then the stress profile takes the form as in the Fig. 13 and is described by formulae: 

The terms with Z(<, po) represent the profile part located inside the surface of the mechani- 
cal properties. The limit load is defined by formula (5.7); here a must be replaced by j?. 
The coordinates c1 can be determined from the equation (5.8) but a and p must be inter- 
changed. 
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FIG. 13. 

The solution is valid when the following conditions are satisfied: 

~,hJl 2 02 fi4 Q 09 
d(P, + 0) G 0, f45 = p--p* 2 0, fi* s a*, 

rt 20, fe6 = B-U--p&-p8(po-f) 2 0. 

(5.24) 

(5.25) 

(5.26) 

Solution 5 

When the condition (5.20) is not satisfied, then in the external part the region with 
m, = p appears. The stress profile is described by the relations: 

a+4p2 I(0 5 )+ a+%5’ I(< p )+ fifflpZ Z(~o,~~)~~(~~, 1) 
2 ) ’ l ( 21) ” O ( 2 ) (5.27) 

NLP~)+P~(P,, L) 

!5.28) 

The limit load is given by (5.17), the coordinate & by (5.18), <I is determined from for- 
mula (5.19) with a and fi interchanged. 

The validity region is defined by the following conditions : 

l, d PO, f& -P--a 6 0, 

52 2 PO* f45 =/3--p* QO, 

51 20, f5, = p- 1 +3~2-3p;2(a-/?)+[p~-(a-p)]* 2 0. 

(5.29) 

(5.30) 

(5.31) 

Solution 6 

When in the solution 4 the coordinate <I tends to 0, then the part of the stress profile 
of the internal annulus lying inside of the surface of mechanical properties becomes 
larger and larger. Beginning with r = 0, the parameter a has no effect on the solution. 
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The stress profile’is described by the following formulae : 

mq = j!?+% I(O,pO)+l(po, 1X 
( ) 

(5.32) 

m, = [fl+~(l-$)]l(O,po~+[(~-l) +$-p2)]4po. I), (5.33) 

where the quantity 4 is defined by (5.12). The shape of the stress profile is shown in Fig. 14. 

FIG. 14. 

The region of validity for the solution is defined by the conditions: 

m,(O) d u, f46 d 0, 

‘r&O + 0) d 0, f67 = fA5 = p-/I* 2 0. 

Solution 7 

(5.34) 

(5.35) 

This solution results from the solution 6 when the condition (5.35) is not satisfied, or 
from the solution 5 when the condition (5.31) is not satisfied. The stress profile, given in 
Fig. 15 is described by the formulae : 

(5.36) 

where the coordinate t2 is defined by the equation (5.18), and the limit load q by formula 
(5.17). 

The solution 7 is valid if the conditions: 

m,(O) d a, fs, G 0, (5.38) 

r2 2 PO, “67 s 0, (5.39) 

hold. 
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mr 

FIG 15. 

The kinematics of the beginning of unconstrained plastic flow is described by the 
formula 

ti = tiL,I(O, 1)+$~z(t, 1) (5.40) 

where t is equal to 5 for solution 1, p0 for solution 2, 4, 6, t2 for solutions 3, 5, 7. The 
coordinate p 7 t defines the location of the plastic hinge. For the solutions 2, 4, 6, the 
hinge develops on the contact annulus where the jump of the mechanical properties of 
the plate exists. 

In the C, space of the pO, a, /3 parameters the surfaces 

fiz = 0, fi4 = 0, f23 = 0, f35 = 0, _L = 0, f46 = 0, f57 = 0, f67 = 0 (5.41) 

separate the cube 0 d a; P, p,, < 1 into seven regions of validity of the derived solutions. 

e 
1 

FIG. 16. 

The nature of the division is schematically shown in Fig. 16. 

When pO-+l then R+*{l,O}; &P-,(0,0); T,Q-+{$O) 
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When pO-+O then P,Q,R+(l,l}; T-+(0,0): S-+{O,l). 

Constructing the above solutions we assumed that a, p < 1. In fact, these restrictions 
are not essential. It is easy to see that the solutions 1,2 adjacent to the line fi = 1 are 
independent of p (compare Figs. 10 and 11) and are valid also for /3 > 1. 

Similarly, the solutions 6 and 7 do not depend on a and are valid for M > 1. For the 
case c1 > 1, p > fiR the classical solution for an isotropic, homogeneous plate is valid. 
This solution can be obtained from the solution 1 for CI = 1. 

We have given the complete analysis of the case of 1 = 1. This assumption gives the 
solutions without negative radial moments m, When /z # 1 (e.g. the jump of the circum- 
ferential limit moment can exist) the regions with m, < 0 may develop as for the isotropic 
plate (see Sections 2, 3, 4). 
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RsDans plusieurs problkmes pratiques, le besoin se fait sentir de considerer les corps dont la non- 
homog&n&tt est decrite par des fonctions discontinues. 

Le sujet de ce rapport est la determination de la capaciti portante de plaques circulaires simplement 
supportkes, soumises ?I une pression uniforme et compostes de parties annulaire concentriques ayant des 
propri&s mbcaniques differantes. Cette discontinuiti des prop&b mtcaniques peut etre caude par une 
discontinuitk de 1’Cpaisseur de la plaque ou par une discontinuitb des propriMs du materiau. 

Pour les plaques isotropes il y a six solutions diffbrentes qui dependent des parambtres determinant la 
nonhomogM et la division de la plaque. Dans chaque cas particulier on a trouvkr les champs des moments, 
les champs des vitesses et la charge limite. L’bspace de validitt de toutes les solutions est ttabli, le probleme de 
la forme optimum dans la clase de ces plaques est tgalement consid&. 

La seconde partie s’occupe speclalement des plaques orthotropes, tout partlcullcrcment d’une plaque en 
beton arm& avec distribution uniforme de l’armature circof&entielle. Dans ce cas egalement. II y ;I \ept solutions 
dflerentes qui dependent des parametres caracteristiques. 

L’analyse cl-dessus a permi de tirer quelque conclusions qualitatives concernant la formation de pl.~ques 
isotropes et orthotropes B nonhomog&nCitt discontinue. 

Zusamme&ssuq-In vielen praktischen Fragen 1st es notwendig, K&per, deren Nichthomogenitlt von 
unstetigen Funktionen beschrieben ist, zu betrachten. 

Der Gegenstand dieser Abhandlung ist die Bestimmung der Grenztragftiigkeit der frei drehbar gestiitzten 
mit gleichmassigem Druck belasteten Kreisplatten, die aus konzentrischen ringftiigen Teilen von verschied- 
enen mechanischen Eiaenschaften bestehen. Dieser Sprung der mechanischen Eiaenschaften kann von einem 
Sprung der Plattendicce oder von einer pliitzlichen yer&n:erung der StoffeigenGhaften verursacht werden. 

Fiir das Problem der Grenztragflihigkeit einer isotropen Platte gibt es se&s verschiedene LBsungen, die 
von den Werten der Nichthomogenittits- und Teilungsparametern abhilngen. In jedem einzelnen Falle werden 
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Momenten- und Geschwindigkeitsfelder, Grenzlast sowie Giiltigkeitsbereich der Lasung angegeben. Die Frage 
der optimalen Gestaltung von Platten der obigen Klasse wird such untersucht. 

fm zweiten Teil werden die orthotropen Platten erortert. Als Sonderfall wird eine Stahlbetonplatte mit 
gl&&m&siger Verteilung der Ringbewehrung betrachtet. Hier gibt es sieben verschiedene von Parameterwerten 
abhangige tisungen. 

Die durchgefbhrte Analyse gestattet gewisse qualitative Schhisse iiber die Gestaltung der isotropen und 
orthotropen Platten von unstetiger Nichthomogenitlt. 

Atiparcr-Mnorrie ~~HKA~AH~I~~~A~Y~~~HBOA~TKH~~XOAC(MOCTH~~CCMOT~HWRT~A,H~OAH~~OA~~T~ 

KOTOpbIX OlTHCbIBaiOT pa3pbIBHble @yHKIWi. 

nPeAMeTOM HaCTOmlJeii CTaTbH IlBJIReTCII OnpeAeneHwe HeCyLUeti CI-IOCO~HOCTH CBdOAHo OnePTbIx 

KpyrJlblX IlJlaCTWIOK, COCTORuHX W3 KOHUeHTpkmCKWX KOJIbUeBbIX YaCTe8 pa3JWiHoti flPOSHoCTH, 

HarpyXCeHHbIX PaBHOMepHbIM AaBAeHseM. CKaYOK npOWOCTH MOxeT 6blTb Hbl3BaH CKB'IKOM TOJWHHbI 

HAUCKa'IKOMMeXaHn.'leCKHXCBO~~B MaTepUaAa. 

B JPBWCHMOCTW OT 3HwietmB napaMerpa HeoAHopoAtiocTw'w napaMeTpa AeneHn*, 3aAara 0 Hecyiueti 

CnOCo6HocTH I43oTpOnHOti IlJIaCTAHKH wMe~2T UIeCTb pa3JlWiHblX pCUIeHti. &IR KamAoro cnysaa yKa3atIbl 

PaClTPeAeJIeHUff MOMeHTOB, CKopoCTw npors6a a TaKXce IIpeAeJIbHaR Harpy3Ka. AaHbI npeAeml 

nPHMeHHMOCTH ITOJIyYeHHbIX P'%leHHZi. 06cyxAaeTc% 3aAa'ta 0 OflTHMaJIbHOti $OpMe WIaCTHHKH pac- 

cMaTpneaeMor0 turacca. 
Ho BTO~O%~CTAH~~YN~TCRO~TOT~O~H~~~~JI~CTHHK~. 06CyZiCAaeTCR~aCTHbI&iCAy%l~~eAe306eToHHoii 

nAaCTHHKH C PaBHOMepHO PaCnPeAeJIeHHOi n0 JIy'Ey OKpyXHOii apMKpOBKOii. 3AeCb, B CBOW OrepeAb, B 

COOTBeTCTBHWCO 3HaveHHrManapaMeTpoB,HMeeTcRceMbpa3nH~HbIxpeuleHHii. 

nPO=AeHHN KCCJIeAcmaHHC npHBOAHT K HCKOTOpbIM Ka'IeCTBeHHbIM Bb,BOAaM OTHOCWTeAbHo 

nPoWrnpolsaHn~ H30TpOIIHbIX H OpTOTpOnHbIX llAaCTHHOKC pa3pbIBHOfi HeOAHOpOAHOCTbH3. 


